Using supramolecular hydrogels to discover the interactions between proteins and molecular nanofibers of small molecules.
نویسندگان
چکیده
Here we report the first example of the use of supramolecular hydrogels to discover the protein targets of aggregates of small molecules.
منابع مشابه
Supramolecular Self-Assembly Inside Living Mammalian Cells
Driven by directional interparticle interactions, e.g., hydrophobic patchy, pi-pi, dipolar, and hydrogen bonding interactions, certain small molecules self-assemble in aqueous solution to form nanofibers (or other nanostructures) and consequently result in hydrogels. Because of their inherent advantages such as biocompatibility, biodegradability, and morphological resemblance of extracellular m...
متن کاملUsing Congo red to report intracellular hydrogelation resulted from self-assembly of small molecules.
This communication reports the use of Congo red to stain the nanofibers of self-assembled small molecules for assaying intracellular supramolecular hydrogels, which provides a convenient method to explore molecular self-assembly inside cells.
متن کاملSupramolecular hydrogels based on the epitope of potassium ion channels.
Imparting aromatic-aromatic interactions to the potassium binding epitope affords a supramolecular hydrogelator that responds to the K(+) concentration by self-assembly into nanofibers of different widths and crosslinking patterns, which illustrates a simple approach to generate biomimic materials based on tunable, hierarchical self-assembly of small molecules.
متن کاملNanospheres of doxorubicin as cross-linkers for a supramolecular hydrogelation
In this study, we synthesized a peptide of Nap-GFFYGRGD, which could self-assemble into supramolecular nanofibers. The peptide itself could only form nanofibers but not hydrogels due to the relative weak inter-fiber interactions. The resulting nanofibers were then utilized as the vehicles for anticancer drug doxorubicin. It was found that the nanofibers of Nap-GFFYGRGD could not encapsulate dox...
متن کاملElectrochemical Oxidation of Flavonoids and Interaction with DNA on the Surface of Supramolecular Ionic Liquid Grafted on Graphene Modified Glassy Carbon Electrode
The study of the interaction between DNA and small molecules such as drugs is one of the current general interest and importance. In this paper, the electrochemical investigation of the interaction between some flavonoids such as rutin, quercetin, and hesperidin with dsDNA on the surface of Supramolecular Ionic Liquid grafted on the Graphene Oxide Modified Glassy Carbon Electrode (</s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 48 67 شماره
صفحات -
تاریخ انتشار 2012